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|. BASICS RAST

Nyquist Theorem

o Derivation:
— Electr. Eng. [1-4]
— Physics, Stat. Mech. [4]

 For passive device, at physical temperature
T, with small Df,

<Pavail(f)>:;rﬁ7(rl%r1u

dF/df (PWIM Hz)

P/ (PW/M Hz)
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s Note: very small powers.
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e Limits
—smdl f: <P_;,>» kgT Df [1 - hf/(2kgT)]
» kg T Df
—largef: ® 0

— knee occurs around f(GHz) » 20 T(K)

e Quantum effect
— Wkg = 0.04799 K/GHz

—Soat 290K, 1 % effect at 116 GHz
at 100 K, 1 % effect at 40 GHz
at 100K, 0.1 % effect at 4 GHz
30K @40 GHz ® 6.4%, 0.26 dB
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NOISE TEMPERATURE

» What about active devices? Can we define
anoise temperature?
» Severd different definitions used:
— delivered vs. available power
— with or without quantum effect
I.e., does T e M Paa (“ POWeEr” definition), or
IS T i the physical temperature that would

result in that value of P, (“equivalent-
physical-temperature” definition)?
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e |[EEE[5]: “(1)(general)(at a pair of
terminals and at a specifice frequency) the
temperature of a passive system having an
available noise power per unit bandwidth
equal to that of the actual terminals.”
and
“(4)(at aport and at a selected frequency) A
temperature given by the exchangeable
noise-power density divided by
Boltzmann’ s constant, at a given port and at
astated frequency.”
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* We (I) will use second definition,
noise temp © available noise-power density
divided by Boltzmann'’s constant.

e It isthe common choice ininternational
comparisons [6] and elsewhere [7].
* It ismuch more convenient for amplifier

noise considerations (at least for careful
ones)
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Nin | Nout = G\lin+ Namp
If N=KT, then N, = KT, , etc., and T, = GT,, +GT,
. ) . _ hf
But if we use the “equivalent physical temperature” definition, then N;, = P
o hf @ hf hf
and similarly for the others, and s0 s 7 = CSgm -1 g 1
Solving for Tout , we would get
N , I |
hi € 122 1 1 ¢
Tou =_I'|n§-+_ + z L,‘Iy
t K 1 & Gg(ehf/krm _ l) (ehf/kTe _ 1);3 Eb
. Di=t
* I:)avail - kBTnoiseDf
» And for passive devices,
é u
é a
T oo=te N __ o5
noise & hf/(k T) u phys
Bge B -1y

e Convenient to define “ Excess noise ratio”

ENR ol@an’ o T ok
|%avai ) T 0~
0

T=9500K P ENRx» 15.02dB

No matter what definition of noise temperature you choose,
it is helpful to state your choice.
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MICROWAVE NETWORKS
& NOISE [8,9]

» Assumelossless lines, single mode.

» Travelling-wave amplitudes a, b.

« Normalized such that Py, = |a|°>—|b|?is
spectral power density.

» May be alittle careless about B; assume
that it's 1Hz where needed.

Di=t
» Describe (linear) one-ports by
G —— = G b+a
1
« And (linear) two-ports by
1 2
Heal ob0_a8 S,0m,0 80

g B 5821 Szzéa'zﬂ bzﬂ




» Available power:

bl al
- >

G |

1

 Delivered power:
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~ 12
Pavail - |aG|
1- |Gef

G

aef’)= - el e

—

1
E R =l - lof =[a['t- o)
%b v
1t &
NIST
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1 Mismatch Factor
© v, =P _belh-lal)
%bl ? Pavall |1_ G,LGG|2
Efficiency
1 2
| | P [sfl-laf) |
G : S : 21 Pldel |1_ GLSZZIth_ |Gs_|2)
' S.6- | f)

) |1' GLSzzlz - |(312821 - Sllszz)GL +SUJZ
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 Available power ratio:
51 ° Poavail Pravail (b1 62 =0)

1 2
| |
S 1S Tt . Isflojaf)
' | * - G- |G)
ﬁ ? - ﬁ G 1] S
GGS=522+EZZGMCS;16
NS

» Temperature translation through a passive,
linear, 2-port (attenuator, adapter, line, ...)

1 2 ! !
F%ava” =a 21FfwI + fo(T,)
G Ta T, =a,T, + f(T,)
T, T, Say T, =Ta, thenT, must =T, , SO

T, =T, =a,T,+ {(T,)
f(T)=(@-a,y)T,

and therefore

T2 =a 21T1 + (1' a 21)Ta




1. NOISE-TEMPERATURE DIESL
MEASUREMENT

Total-Power Radiometer [10-12]

» Two principal types of radiometer for noise-
temperature measurements are Dicke radiometer
and total-power radiometer [10].

» Total-power radiometer is most common for lab
use, & that’s what we'’ll discuss.

NIST

» Simple case: symmetric, matched (all Gs=0)

ot Matched ® Pyg = Payi

Cod}— (P) Linear ® P =a+ bpey = a+ bpauai
DUT— 2 standards (h,c) determine a, b:

P -P,

a=P- bkBT, Bka:TE__TC_
(Yy-D) P P
So T, =T.+ X (Th—TC), WhereYX:_X,Yh:_h
v -9 P, P,

10
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» Not-so-simple case (unmatched, asymmetric)
Three complications:

—  Pae = MPaai
Paet rad = N Pggc - and hyt hpt he
— a b=aG), b(G)

— Handle first two by measuring and correcting.

NIST
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— For dependence of aand b on G, have three
choices:

* tune so that G, = G. = G, (very narrow frequency
range, need special standards)

» characterize dependence on G (broadband, but alot
of work, and difficult to get good accuracy)

* isolate (easy, accurate, but limits frequency range &
difficult at low frequency)

11
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— If isolate, a and b are (almost) independent of
the source, and

_ (Y 1)
Tx=Tamp* @Mj,j (y 3) s Tamb)

Uncertainties NS

 Simple case (matched):

Y- 1) (M
Te=Tat X 1 1y) %LK
/(Ys-l NN \

| \
A
typically around 1 %
<
about 1 or 2%

4
small uncert,
but linearity

concern
4

Uncert “should”
be negligible
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» Simple-case uncerts (cont’ d)

— drift: temperature stability/control important
(effect minimized by frequent switching to
standards)

— connector variability: hard to do much better
than 0.1%, easy to do considerably worse.

— Da, Db: depends on details of system, can
make a crude estimate;

Too~ To, ¥YDGY2~0.05or 0.1

So DT, ~0.050r 0.1" T,

NIST

ISR

* linearity: serious concern if T, very different
from standards, less (but some) worry if T,
near temperature of a standard.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
T(K)

13
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» Uncertainties (more careful case)
(Numbers are for NIST case) [13,14]

— Radiometer equation:

_ M Dor
TX_TarTb MS:S(Y -1) S an’b)

— Ambient standard:

u, (amb) |T -T |T
S 0.1K _ 9
er, er= 0.034%
B |T -T |T 29%6K

X
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— “Other” standard:
u, (S)

’1~“ _s, S 02%(NISI'WG)08%(NISI'coax)
Ta” s Ts

— Path asymmetry: (zero if connect to same port)

U (n/h)
_{un/h Y,y =0-2% to 0.56%
— Mismatch:;
u. (M/M)
Tx =l Taly u » 0.2%
TX TX M/M'* "MI/M

14
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— Connectors.

u, (conn)
X =u
0
Ty

T
1-§{1/f(GHz), Uy» 0.053% 10 0.069%
X

(depending on connector type)

— Other: Nonlinearity, imperfect isolation, power
ratio measurement, and broadband
mismatch/frequency offset all lead to small
(<0.1%) uncertaintiesfor T, around 10 000 K
(for usg/NIST).

: NIST
* U{(Type-B)/T asafunctionof T NESE
Standard relative uncertainty (1s)

NIST’s NFRad, GPC-7

ur T, (type-B only)

0.01

\f

LI DL LU L I L L HL U L BN B
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000  1100C
T.(K)

o
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Adapters NESE

e MeasureT at 2, want T at 1.

|
]
]
DUT ® Adapter ® Radiometer

T ]
|
[}

I
I
|
1 2

T, =a,Tour +(1-a,)T,

mb

S0 — Tz - (1' a21)Ta

a21

mb

TD uT

NIST
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[1l. NOISE FIGURE &
PARAMETERS

Noise Figure Defined

» Want a measure of how much noise an
amplifier addsto asignal or how much it
degrades the S/N ratio.

16



» Define Noise Figure, |IEEE [15]:
(at agiven frequency) theratio of total
output noise power per unit bandwidth to
the portion of the output noise power which
IS due to the input noise, evaluated for the
case where the input noise power iskg T, ,
where T, = 290 K. (vacuum fluctuation
comment)

» Noisefigure & signal to noise ratio[ 16]:

(SIN), = S, /290K G 200K+N

= amp _ F
(S/N)y; GS, /(G 20K+N

G™ 290K

out an‘p)

NIST
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 Effective input noise temperature:

SnvNir———D——— SOUl:GSn

Nout = C':‘Nin + Nanp = C':‘kBTin + Namp

Define Ny, © Gk,

S0 Noy = Cka(Tin + Te)

Noise _ Noiseout _ G(To *Te) _ garoﬂ—ef
_ F >0 F(dB) = 10log - 0=
Figure Noisein GTO ¢ To

Note: G, F, T al dependon G

17



Simple Case, all G’s equal

Th I| G Nout,h = GkB(Th + Te)

| G Nout,c = GkB(Tc + Te)

7
Combine & solve:

N - N NT -NT. T -YT
G:k h 'I(': Te= CNh NhC: hY 1C where Y = Ny/N,
U h °¢C )

T -YT BT -T.¢ EN
F:_']_+T_e:1+ h C:ENR+€EY%§O Ci» Rh
0 (Y-])TO Y-1 §Y-1§§ T (Y-1)

if T Ty

F(dB) » ENR , (dB)- (Y - 1)(dB) (250K ® ~63°F)

NIST
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Noise Parameters

 But that’sjust for one value of G, ... Want
to determine F or T for any G, SO
parameterize dependence on G ¢

» Several parameterizationsin use; most
common are variants of the IEEE [17] form.
Particular IEEE form we use is[18]

2

Te = Tem‘n +1 |GG _ Gopt
" belaf e

=4
Z,

2

opt

18



. _ . NIST
Wave Representation of Noise Matrix ™=

» For microwave radiometry, wave
representation [18-23] provides more
flexibility.

 Linear 2-port:

b, & b
AR & X

NIST
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» Noise matrix is defined by
N; =<bI b’;>
or '\]i j :<6i 6:> for intrinsic noise matrix
 Four real noise parameters:

1) )

~

b ). ([,

19



 Output noise temperature T,

b b
23 &3 _ sl

|1 GGSUJ

w2 i)

s

N, = ZR%m(bl(bz/ S.) )

NEST
« Sofor T,we have
el Besly
Te_ 1 2 (1 1) G 12
@-le)  a-|e) (1- |G|) Rde- asex]

where kX, ° <|61| > ke X © <|bz/$1

» Whereas |EEE parameterization is

G - Gy
T e,

e, mln

) el

20



~NEEE
 We can relate the two:
t=X, 1+ Sy X, - 2Re[(1+8,)" X,]
T, = X,- Gopl 2[X1T|811|2x22\' 2Re(sl*1x12)]
| 1+ (G| )
e 0
Gopt :EQ]_- 1- izz
28\ by
Where h= X2(1+ |§1|2)+ X, - 2Re(S1X12)
(Xzsu' X12
NIST
IESsE

» Going the other way,

2

t- §,G
Xl :Te,min(|SAl|2 - l) +m

2

|+ opt
2

tiG

opt

X2 :Te,min 2

[1+ Gy

th:pt(l_ SllGopt)
1+G,, ’

xlz = ﬁlTe,min -

note bound implied by X; > 0.

21



M easuring Noise Parameters NESL

* Many different methods [18,20,22,24-34],
most based on | EEE parameterization.

» Basicideaof (almost) all methodsisto
— present amplifier (or device) with avariety of
different input terminations (G& T),

— have an equation for the “output” in terms of
the noise parameters and known quantities
(G’'s, T's, S-parameters),

— determine noise parameters by afit to the
measured output.

— Need good distrib. of G’sin complex plane.

NIST
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« “Output” can be
— Noisefigure [24]

Tll TL
cN0|se Tuner > '

— Power [25]
T, RUT
—
lat T,

— Note: output G, matching, available power, etc.




» Noise-matrix approach [22,23,30] to
measuring noise parameters:

T,
Many G [ o
Bl at T
=2

G =S, + G:S,Sx,
(1- GSy)

N, +N,+N, +N %
m[G+l+2+12] Ny =— <

N;,=2 Rem(ﬁ(bz S >A

NIST
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» Supplemental measurement (noise matrix)
[27,31] — not today

DU 1
“Matched”
Load, T,
kT [N +N +N +N] |l GGSZZ'
\GssT N1=<542>
2571 e z
Gl=s, + e eon NZ:?GGZGZ <b2/82'l>
(1' Geszz) S..5,,G;
N, ZRﬁ@(bﬁSﬂ

23



* Noise-Parameter Uncertainties Ta—

— Monte Carlo method is probably the most
practical [26,35-38]
— Some genera approximate features [38]:

* UncertsinG and T, (& F,,;,) &€ dominated by
uncertinT,. 0.1dB uncertin T,® ~0.1dB uncert
inGandF,,.

* Uncertsin G, are dominated by uncertsin G¢'s.
UncertinReor Im G, is~3or 4" uncertin Reor
Im G (for 13 terminations).

* tissensitive to just about everything.

* T, IS Not amajor factor, because it is known much
better than T, Note, however, that it could affect T,
or the amplifier properties.

Noisein Differential Amplifiers NEST

o Simple case, all Gs=0; full treatment in
[39].

e Input ports1 & 2, output port 3.
ldeally, by (g, - @,).

G=G,=G;=0
o pn a0 %2)
1 | - 2
G | s, 0 (5u%80)
| LG o2
{1‘ _:_ 4_ _> b3:S3la1+%2a2+lis
<b2 a; % by =S a +%+a++63

G31:|831121 G32:|532|21 G, :lsslz’ Ga+:|%+|2
Gyt Gy, =G, +G,,

24



» Output noise power per unit BW at port 3is
glven by N, :<|831a1 +5p8, +63|2>
* If uncorrelated noise sources T, and T, are

input, then .
N3 / kB = GSlTl + GSZTZ +T3

T, =(Gyy +G,)T, = (G +G,, )T,

S0 to determine T, and the gains, measure
with different T, and T,’s.

NIST

ISR

» Assume a hot and a cold source for each
input port: Ty, Ty, Tros Teo:

* Let N; ;. be the ouput noise power at port 3
for the hot source on port 1 & the cold
source on port 2, etc. Then (ignoring kg)

Ny = Gaplyy +G35T, + T,
Nape = Gailpy + Ggpl o + T3
N3,ch = G31Tc1 + G32Th2 +T3

N, =GyT, +Gy,T,, +T,

31l°cl 32°c2

25



» Four equations, three unknowns. Measure
al four & fit, or measure any three & solve.

« So we can determineT,, G4y, and Ga,.

» Therefore, we can determine T, and
(G3,+Gy) for differential & common modes
from hot-cold measurements with
uncorrelated noise sources on the physical
ports1 & 2.

NIST
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» Morework required to get G;, and G5
separately:
— correlated inputsto ports 1 & 2
— approximate G; >>G;, , 0 G, » Gg, + G
— measure S;  some other way

26
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« Simple example: say you have just one hot
source (T,;=T,, and no hh measurement)
and cold isjust ambient (T ;= T,,), then have

. (T, 4T, T
Ts = (Th C) 3,cc — (N3,hc + NS,ch)
(Mo~ To) (Th- To)
G31 - N3,hc B N3,cc Gsz — N3,ch B N3,cc
T T, T,

NIST
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Then if we define Y, = N./N,. , €tc., we can

get T = Th- Yinle
Y, -1
N, - N
G, +G;, =G, +G,, = .F—: T,

wherewe can use Y, = Y, + Y} - 1 (since
we didn’t measure hh).

27



» What about Noise Figure?
* Can defineit as

total noise out |
® noise out dueto noise in|_
0

noise out dueto amp |
noise out due to noise in|T
0

=1+ (G31 T GBZ)Te
(G31 + G32 )TO

:1+£

o]

NIST
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» Complication: this noise figure does not
measure degradation of S/N.

Ty —
>J; GS» TO + C':‘3+T0 + (GS-+G3+)Te

T,
F(S/ N): (S/ N) Noul
(S/ N)out G3- Nin

_(Gy +Gy.)([,+T,)
G Ty
? G3+ ? Te O g Te O
=Cl+— : + —_—i» + —-x
Ga- To 4] To ]

« Differs by factor of (1+G,,/G,), dueto
difference in what is*input noise.”

in —
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